Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 807(Pt 2): 150874, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34627905

RESUMO

Cryoconite is a mixture of mineral and organic material covering glacial ice, playing important roles in biogeochemical cycles and lowering the albedo of a glacier surface. Understanding the differences in structure of cryoconite across the globe can be important in recognizing past and future changes in supraglacial environments and ice-organisms-minerals interactions. Despite the worldwide distribution and over a century of studies, the basic characteristics of cryoconite, including its forms and geochemistry, remain poorly studied. The major purpose of our study is the presentation and description of morphological diversity, chemical and photoautotrophs composition, and organic matter content of cryoconite sampled from 33 polar and mountain glaciers around the globe. Observations revealed that cryoconite is represented by various morphologies including loose and granular forms. Granular cryoconite includes smooth, rounded, or irregularly shaped forms; with some having their surfaces covered by cyanobacteria filaments. The occurrence of granules increased with the organic matter content in cryoconite. Moreover, a major driver of cryoconite colouring was the concentration of organic matter and its interplay with minerals. The structure of cyanobacteria and algae communities in cryoconite differs between glaciers, but representatives of cyanobacteria families Pseudanabaenaceae and Phormidiaceae, and algae families Mesotaeniaceae and Ulotrichaceae were the most common. The most of detected cyanobacterial taxa are known to produce polymeric substances (EPS) that may cement granules. Organic matter content in cryoconite varied between glaciers, ranging from 1% to 38%. The geochemistry of all the investigated samples reflected local sediment sources, except of highly concentrated Pb and Hg in cryoconite collected from European glaciers near industrialized regions, corroborating cryoconite as element-specific collector and potential environmental indicator of anthropogenic activity. Our work supports a notion that cryoconite may be more than just simple sediment and instead exhibits complex structure with relevance for biodiversity and the functioning of glacial ecosystems.


Assuntos
Efeitos Antropogênicos , Camada de Gelo , Ecossistema , Humanos , Minerais
2.
Waste Manag ; 125: 27-39, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33667980

RESUMO

The main aim of this study was to assess the suitability of geophysical methods for investigating old waste dumps. Electrical Resistivity Tomography (ERT), Seismic Refraction Tomography (SRT), Multichannel Analysis of Surface Waves (MASW) and Ground Penetrating Radar (GPR) were the techniques used to characterize a waste dump in the town of Dabrowa Górnicza (S Poland). GPR and SRT were the most difficult methods to use because of the dense vegetation, which attenuated the passage of electromagnetic and seismic waves to the ground. However, GPR did turn out to be an appropriate tool for characterizing variations in the surface cover. ERT, SRT and MASW clearly highlighted the transition between the waste deposit and the host sediments, and determined the approximate thickness of the waste deposits. With MASW, however, the waste type and the boundary between the waste layer and surface cover could not be delineated. In some places, the surface cover was identified using SRT. With both these methods, the problem with identification may be due to the small contrast in the S- and P-wave velocities through two kinds of waste (municipal and industrial), the thinness of the waste layer, and the considerable differentiation of the surface cover. The most accurate results regarding the waste deposits were obtained using ERT and different electrode spacings. ERT pinpointed the exact location of the stored waste, distinguished between the types of waste, and identified the soil cover. Data from shallow boreholes confirmed the interpretations of the methods.


Assuntos
Monitoramento Ambiental , Instalações de Eliminação de Resíduos , Eletricidade , Polônia , Tomografia
3.
Sci Total Environ ; 723: 138025, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32213417

RESUMO

We assessed the structure of microbial communities in the subglacial drainage system of the Werenskioldbreen glacier, Svalbard, which consists of three independent channels. Dome-shaped naled ice bodies that had been forming and releasing subglacial water in the glacial forefield during accumulations season were used to study glacial microbiome. We tested the hypothesis that the properties of the water transported by these channels are site-dependent and influence bacterial diversity. We therefore established the phylogenetic structure of the subglacial microbial communities using next generation sequencing (NGS) of the 16S rRNA gene and performed bioinformatics analyses. A total of 1409 OTUs (operational taxonomic units) belonged to 40 phyla; mostly Proteobacteria, Gracilibacteria, Bacteroidetes, Actinobacteria and Parcubacteria were identified. Sites located on the edge of Werenskioldbreen forefield (Angell, Kvisla) were mainly dominated by Betaproteobacteria. In the central site (Dusan) domination of Epsilonproteobacteria class was observed. Gracilibacteria (GN02) and Gammaproteobacteria represented the dominant taxa only in the sample Kvisla 2. Principal Coordinate Analysis (PCoA) of beta diversity revealed that phylogenetic profiles grouped in three different clusters according to the sampling site. Moreover, higher similarity of bacterial communities from Angell and Kvisla compared to Dusan was confirmed by cluster analysis and Venn diagrams. The highest alpha index values was measured in Dusan. Richness and phylogenetic diversity indices were significantly (p < .05) and positively correlated with pH values of subglacial water and negatively with concentration of Cl-, Br-, and NO3- anions. These anions negatively impacted the values of richness indices but positively correlated with abundance of some microbial phyla. Our results indicated that subglacial water from naled ice bodies offer the possibility to study the glacial microbiome. In the studied subglacial water, the microbial community structure was sampling site specific and dependent on the water properties, which in turn were probably influenced by the local bedrock composition.


Assuntos
Microbiota , Naled , Camada de Gelo , Filogenia , RNA Ribossômico 16S , Svalbard , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...